RICO S-PolKa Radar Data Availability and QA

Bob Rilling

With extensive contributions from

Scott Ellis

Gordon Farquharson, Dennis Flanigan, Jean Hurst, Charlie Knight, Milan Pipersky, Frank Pratte

Also contributing:

Don Ferraro, John Hubbert, Jon Lutz, Al Phinney, J. Vivekanandan

All Results are Preliminary

A Lot to Cover:

- Information availability
- Data set description
 - Radar
 - Antenna camera images
- Processing status
- Data availability
- Quality Assurance Issues

Issues to Resolve

- Level of data quality required
- Priority time periods
- Parameters for inclusion in final data
- Data distribution mechanism
- Ongoing updates and feedback
 - S-PolKa RICO report
 - Bugzilla for S-PolKa?
 - Wiki?

On-Line Resources

- S-PolKa-band Project Report
 - http://www.atd.ucar.edu/rtf/projects/rico2004/spol
 - very much under construction!
 - Intended to be the repository of all information
- Requesting Data
 - http://www.atd.ucar.edu/rdp/mss_retrieval
 - http://www.joss.ucar.edu
- JOSS on-line info
 - http://www.joss.ucar.edu

About S-PolKa in RICO

- The location
- The Site
- View from the radar
- Clutter
- Why use S and K bands?

NCAR

Below Sea-level!

http://www.atd.ucar.edu/rtf/projects/rico2004/spol/photos/Panorama/Spol_RICO_pano.html

Period of Operations

- 24-Nov-2004 thru 25-Jan-2005
 - Earliest collections were incomplete
- 24/7 ops targeted for S-band
- On-demand ops for Ka, with consideration for magnetron lifetime
- Approximately 1/3 ops with Ka
- Actual mileage did vary! (see operations matrix)

Some Metrics

- Over 1300 hours of operation
- ~25 measured/derived parameters
 - See parameter list
- Raw data set size of 1.7 TBytes.
- Processed size of about the same (1.8TB)
- 1.45 GB/hour with Ka (all variables)
- 1.2 GB/hour, S-band only
- Able to create re-processed data at 10 to 12 times realtime (4 to 6 24-hr days to reprocess)
- Antenna Camera: 700 hours, 5.5 million images, 120 GB

S-PolKa Parameters

DBZ PHIDP NCP_HH_K

CDBZ RHOHV P_HH_K

DL SW P_VV_K

DM VR PHO_HV_K

DX ZDR SW_HH_K

DY TH_VH_K

LDR AIQ V_HH_K

LVDR NIQ ZDR_VH_K

NCP ZG0_HH_K

Z_HH_K

- Sensitive to small cloud drops
- Insensitive (mostly?) to Bragg scattering
- Potential for new insights using Zdr (and other polarimetric variables) at Ka
- Insensitive to clutter from sidelobes
 - λ ^{3.9} dependence (Kropfli and Kelly, 1998)
 - Would greatly limit sea clutter (but siting made this unnecessary)
- Potential for liquid water measurement through S/Ka differential attenuation
- Excellent signal statistics

- Highly attenuated frequency
- Subject to Mie scattering
- Subject to differential Mie scattering
- Electronics are somewhat unstable (temperature sensitivity, frequency drift)

RICO Data Quality Concerns

- Ka on S-Pol is a new system for NCAR
- Ka received little testing in RICO configuration prior to 24-Nov-2004
- Incompletely characterized system
- High-frequency systems can be fussy!
- S-band had taken a beating coming back from Mexico (power meter, coupler, etc.)
- Unfamiliar with utility of Ka for measurement of tropical clouds
- Much new software, both for radar processors and post-production

S-Pol Radar QC Procedures

Engineering Checks

- Inspect all waveguide connections; scanning for leakages
- ii. Inspect antenna assembly, check feedhorn position
- iii. Measurement of transmitted power
- iv. Test signals to determine waveguide losses, system/receiver gains
- v. Tuning receivers and transmitters
- vi. Verify waveforms
- vii. Review radar processor performance
- viii. Comparison with past histories
- ix. etc

Special Data Set Collection

- i. Antenna pattern measurements (between projects)
- ii. Feedhorn/sphere calibrations (done rarely; logistical issues)
- iii. Solar scans and calibrations (direct verification of received power/gain)
- iv. Solar alignment checks (for antenna pointing (azim/elev)
- V. Clutter scans (e.g. range/gate alignment issues)
- vi. Vertical pointing scans (zdr bias estimate)
- vii. Low-level scans (beam blockage issues)
- viii. Analysis of candidate data sets for self-consistent calibration (PHI-cal)

Data Monitoring

- Constant review of data recording
- ii. Review of antenna scanning
- iii. Monitoring of test pulse signals
- iv. Monitoring of background noise power
- v. Monitoring of parameters for generally correct signatures
- vi. Review of clutter patterns for unexpected azimuth
- vii. Review of changes to processing software

Known Hardware Problems

- Ka Magnetron failure prior to 15-Dec-2004
- Ka coax failure
- Ka cal drift with temperature changes
- S-band power meter calibration issue
- S-band processor dropouts
- Non-optimal Ka design for Zdr
 - Waveguide loss
 - Separate H and V receivers

Data Quality Concerns

- Radar absolute calibration (really, 4 radars: Ka HH and VV; S HH, VV)
- Exact beam alignment
- Exact gate alignment
- Exactly synchronous sampling (related to beam alignment)
- Short- and Long-term systems stability
- Guarding against dropped data and meta data
- Full characterization of systems

Specific Issues

- S-band calibration
- S-band Zdr bias
- Ka noise power stability (background checks)
- Ka noise power subtraction
- Ka calibration: relation to S-band
- Ka attenuation and beam blockage
- Preliminary systems sensitivities
- Ka/S beam alignment
- Ka HH/VV gate alignment

S-Band Calibration

- Systems measurement (table available)
- Solar calibration
- Self-consistent calibration (Ellis' "PHICal")
- Result: +1.4 dB correction to S-band DBZ
 - very good level of confidence
 - Not yet applied to semi-processed data

1-1-	-	100
	~ A	n
- NI		
		m

														NCA
1994	2809											#480	44.40	State yine accred
9-Apr-95	2813					-115.70	-115.40							FLI
ZI-Dec-96	27 45					-116,00	-115.50							Ballate
18-Apr-95	2809	55.40	55.40	-35.00	-35.60	-115.20	-115.40							CASES, New Preselectors.
22-0cH97	2809	55.30	95.40	-35.90	-35.70									Diode power meters now used
17-Nov-97	2809											4500	45,60	homalMesa
(2-feb-98	2809					-115.30	-114.80							Mildhdelenvined bandwidth= 804 kirs 4/23/98
20-Feb-98	2809							45.20	45.70	4571	45.93			
124Mar-98	2809							4560	45.70	45.11	45,93			Rux based on Penticbridata@2800mhz.or Palehup@2555 and 4698mhz.
194Mar-98	2809											4500	44.80	~ Intol after Isnowing round.
25-Mar-98	2809							4580	45.90	4531	45.13			184CE 8, 213CE, Jon says he has = 1/4 dB beller peak than previous
22-Apr-98	2809											4570	44.30	measurement.
22-Apr-98	2809							45.40	45.00	4491	45.23			Besilever, Ustry Milith's Range Averaging.
Z)-Apr-98	2809					-115.10	-114.80							Janmeasures from proæssar.
29-Apr-98	2809							4560	45,60	45.11	44.83			Starp over me asure s 0.2 d Binore (bolf) with notice correction.
HMay-98	2809							4500	45.90	4551	45.13			Starp over 0.2 d Briore, Har, 0.1 dB mare Ver Wilhindse correction.
11-May-98	2809									4561	45.43	45.10	45.20	Biloralo Mounidin
14-May-98	2809							4590	45.70	45.41	44.93			Laster TR Lite(unknownloss) in Har channel.
18-JUH98	2809	96.70	57.32	-35.90	-35/60	-1 15.20	-114.50	603	45.05	4551	45.30			Is Ical in Floridanio PREDIPS8
19-34-98	2809							45.12	45.14	4560	45.39			and call in Floridanion PREDIPSB
20-AH98	2809							45.10	45.CD	45.58	45.27			3d cd in Roldarfy PREDIPSB
11-Aug-98	2809							45.12	45.14	4560	45.39			4h cd in Floridania PRED PSS
25-Oep1498	2809							4505	45, 12	45.53	45.37			Shicalin Floridation PRED PSS
(2-Jan/99	2809	56.80	57:10	-35.90	-35.55	-115.20	-114.50	4590	45.03	4538	45.28			is Ical in Bradi. Used PerMolan Nurvalues, Noise od from Florida. 2040GMT
19-Jany99	2809							46.09	45.14	45.57	45,39			3rd callin Bradii. Done in morning all 1250GMT
Z-Jay99	2809							4593	45.05	45.41	45.30			3d cd in Bradii. Date Inmaning at 1330SMT
2Feb-99	2809							4589	45.0B	45.37	45.33			4hcd in Bradi. Date inmorting at 12403MT
7-Cep-99	2785	57.00	57.30	-35.88	-35.32	-115.20	-115.00	45.11	45.18	4488	45.22			is loal in Italy. Done at 0730GMTT, Moise od from Bdy 9/7,599. Used
														interpidation for travelue.
10-Osp-99	2786							45.27	45,43	4504	45.47			California Inmorting at 05000MT. At error+0.2, Blenta +0.7
10-Oep-99	2786							46.23	45.33	4500	45.37			Calidore Imatemporal 14005MT. Az error + 0.1, B error + 0.8
21-Oep-99	27.85							45.10	65.22	4487	45.25			Calidore immorting at 10x0GMT. At error+0.3, Blerror+0.5
21-Oep-99	2786							45.86	45.96	4463	45.00			Calidore Imafermorral 1430SMT. As error-0.2, Bierror-0.5
12-00199	2786							4502	€5.02	4479	45.05			Bristod date arter feet replacement. Taken at 12/00MT
14-OcH99	2785							45.19	45,19	4496	45.23			Second od with new feet . Takenal (2430/IIT
2 Nov-99	2785							4583	45,63	4460	44.67			Taken al 0900GMT. Some heavy diout in area. AZ-0.2, B +0.9
7-Nov-99	2786							4588	44.58	4465	43,62			Last cd in tidy, done at 11:30SMT. Aberra +0.1, Blena +0.1
(34May-00	2809	96.80	57.15	-35.85	-35.55	-115.20	-115.00	4567	45, 19	4482	4.4			Is loal of STEPS. May have noise correction

PHI-Cal

- -- requires good study case(s) (only 2 for RICO)
- -- requires good assumptions of droplet size distribution
- -- requires calibrated Zdr

Zdr Bias

- Zdr is residual difference between two large quantities (Zdr = dBZ_{hh} – dBZ_w)
- Require accuracy of Zdr to < .1 dB
- dBZ_{hh} and dBZ_w known only to ~.5 dB
- Both dBZ_{hh} and dBZ_w are very stable at S-band (no wandering over time), even if absolute calibration is uncertain
- A bias can be added, if one can be determined.
- Require real-world targets with known Zdr characteristics

Targets for Zdr Bias Determination

- Small raindrops/cloud at vertical incidence
 - Often available
 - Limited utility of shallow clouds due to radar T/R tube issues
- Bragg scattering
 - Very available
 - Somewhat large scatter in determinations
- Very small hydrometeors at non-vertical
 - Selection criteria can be very subjective
- Ground clutter (Hubbert & Bringi, 2003)
- Solar return (not used)

Zdr Bias Determinations

Vertical Pointing	.2 dB	Clouds too shallow; T/R tube recovery issues
Bragg scattering	.2 to .5	Noisy determination
Small hydrometeors	n/a	(not done)
Ground Clutter	.37	Well behaved results, tight distribution

Result: add .37 dB to all raw S-band Zdr values

Ka Receiver Stability

- V receiver and H receiver
- Long-term (gross) stability from noise studies
 - System noise should be fairly constant
 - Atmospheric noise should be fairly constant
 - Can't always tell which is which!
- Short-term from internal processor files

Ka background noise

(Ka prior to implementing noise subtraction)

-115.50 (IXA prior to implement	ing moise subtraction
-114.50 -113.50 H -112.50 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	P_HH_K Mean = -111.4
-108.50	determinations.

Project P_HH_K Noise Summary

NCAR

RICO S-Pol P_HH_Ka Noise Power (From Histograms, 7.0 and 9.5 deg scans)

Project P_VV_K Noise Summary

NCAR

RICO S-Pol P_VV_Ka Noise Power (From Histograms; 0.5 deg scans, only)

Need for accurate noise determination

Application of noise subtraction correction:

$$M = S + N$$

Impact on sensitivity vs range

Potential Noise Subtraction Errors

P_HH_K

Potential Noise Subtraction Errors

Ka Calibration

- Which Ka parameter?
 - ZG0 HH K (adjusted for transmit-power)
 - Z_HH_K (uses static value of tx power)
- Match to S-band: our only real option
- Real-world problems
 - Ka beam blockage (partial power loss)
 - Ka attenuation by gas and hydrometeors
 - Bragg scattering
 - Changing Ka/S bias?

Ka Z_HH Sensitivity

Ka/S Beam Alignment

Gate Alignment

- Checked by clutter and weather
- S-band HH matches S-band VV
- Ka HH matches S-band HH (with single gate adjustment)
- Ka VV does not match Ka HH!
 - About ½ gate off
 - Adjusted to about ¼ gate on 26-Dec
 - Affects Ka Zdr

Shh and Khh Reflectivity Comparison, with Attenuation

- Not simple
 - Careful selection of cases
 - Ka attenuation changes with range/height
 - May be problems with Ka Bragg scattering (?)
- Not necessarily stable over time
- Used only ZG0_HH_K with S DBZ
- Need to re-check with Z_HH_K
- Method is still evolving
- A detailed description available for those who need to know (off-line, later)

Z-Comparison Case Selection NCAR

Basics

- Two unknowns: bias, attenuation
- Multiple pairs of echoes/equations
- Schematically:

$$\Delta Z_1 = (dBZ_S - dBZ_K)_1 = Bias + Attn * 2R_1$$

 $\Delta Z_2 = (dBZ_S - dBZ_K)_2 = Bias + Attn * 2R_2$
 $\Delta Z_2 - \Delta Z_1 = 2 * Attn * (R_2 - R_1)$
 $\Delta Z_1 - \Delta Z_2 - \Delta Z_1 = 2 * Attn * (R_2 - R_1)$
Solve any/all: $\Delta Z_2 - \Delta Z_1 = 2 * Attn * 2R$

Results:

- Reflectivity bias between 1.5 and 4.5 dBZ
 (Corrected Ka is often higher than S-band DBZ)
- One-way Ka gaseous attenuation ~.2 dB/km
- Varying bias largely due to Ka tx power meas.

(That's all I'll say about this)

As for the Antenna Camera

NCAR

Well, the clock drifted.

We need a modified display tool.

Need to rename 5.5 M images.

Need to link time to az/el

NTP daemon failed! Current one blows-up! Names include exact time! Prep work is done, but ...

(maybe another time)

- We're making progress
- We're not done (another 1-2 months?)
- Data will be very usable, but will require awareness on part of scientist (possible exception: Ka Zdr?)
- Can use help: need to get test data to scientists, and request feedback.

Special thanks to all who have contributed to this presentation, and to those who continue to work on the S-PolKa data quality and data set.